2.1				
Intege	Digit			
\rightarrow	Integ	er	Digit	Digit
\rightarrow	Integer	Digit	Digit	Digit
\rightarrow	Digit	Digit	Digit	Digit
\rightarrow	4	Digit	Digit	Digit
\rightarrow	4	5	Digit	Digit
\rightarrow	4	5	2	Digit
\rightarrow	4	5	2	0

If we have just one digit *x*, we can derive it as follows:

Integer \rightarrow Digit $\rightarrow x$

That is, we can derive x in just two steps. Since there is no production rule which takes the start symbol Integer to a terminal symbol, there is no valid derivation of length 1.

Now suppose that any string of digits of length d-1 requires at least 2(d-1) steps. Then a string of digits of length d may be written yx where x is one digit and y is a string of digits of length d-1. Since y is length d-1, a derivation of y is at least 2(d-1) steps. Then we know from above that a derivation of one digit requires at least 2 steps. So a derivation of yx (of length d) must be at least 2 + 2(d-1) = 2d steps.

1

2.4

(b)

Assignmen	nt				
	_\ 				
Identifier =	Expressio	n			
i	Conjuncti	on			
	Equality	/			
	Relation	1			
	Addition	n			
Term	AddOp	r	Term		
Factor	+	Factor	MulOp	Factor	
Primary		Primary	*	Primary	
Identifier		Identifier		Expression	
Letter		Letter		Conjunction	1
i		j		Equality	
				Relation	
				Addition	
			Term	AddOp	Term
			 Easter		 Fostor
			racior	-	ractor
			k		3

= / \ x + / \ x -/ \ a 1

(c)

(c)