2.1

Integer \rightarrow Integer		Digit	
\rightarrow	Integer	Digit	Digit
\rightarrow Integer	Digit	Digit	Digit
\rightarrow	Digit	Digit	Digit

If we have just one digit x, we can derive it as follows:
Integer \rightarrow Digit
$\rightarrow x$
That is, we can derive x in just two steps. Since there is no production rule which takes the start symbol Integer to a terminal symbol, there is no valid derivation of length 1.

Now suppose that any string of digits of length $d-1$ requires at least $2(d-1)$ steps. Then a string of digits of length d may be written $y x$ where x is one digit and y is a string of digits of length $d-1$. Since y is length $d-1$, a derivation of y is at least $2(d-1)$ steps. Then we know from above that a derivation of one digit requires at least 2 steps. So a derivation of $y x$ (of length d) must be at least $2+2(d-1)=2 d$ steps.

2.4

Identifier \rightarrow Letter Digit Letter

$$
\begin{array}{lcc}
\rightarrow \text { Letter Digit } & i \\
\rightarrow \text { Letter } & 2 & i \\
\rightarrow \quad a & 2 & i
\end{array}
$$

2.5
(a)

(b)

(c)

2.20
(a)

(b)

> b /
> c d
(c)

$$
\begin{aligned}
& \begin{array}{r}
= \\
1 \\
1 \\
+
\end{array} \\
& 1 \\
& \text { i } \\
& \begin{array}{l}
11 \\
*
\end{array} \\
& \begin{array}{l}
\text { / } \\
\mathrm{j} \\
\mathrm{k}
\end{array}
\end{aligned}
$$

